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Abstract. The weighted likelihood is a generalization of the likelihood designed to borrow

strength from similar populations while making minimal assumptions. If the weights are prop-

erly chosen, the maximum weighted likelihood estimate may perform better than the maximum

likelihood estimate. In a previous article, the minimum averaged mean squared error (MAMSE)

weights are proposed and simulations show that they allow to outperform the MLE in many

cases. In this paper, we study the asymptotic properties of the MAMSE weights. In particular,

we prove that the MAMSE-weighted mixture of empirical distribution functions converges uni-

formly to the target distribution and that the maximum weighted likelihood estimate is strongly

consistent. A short simulation illustrates the use of bootstrap in this context.
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1 Introduction

The weighted likelihood is a frequentist method that allows to borrow strength from datasets that do not

follow the target distribution exactly. This work is a sequel to that of Hu (1994), later published as Hu &

Zidek (2002), who designed the weighted likelihood in order to take advantage of the relevant information

contained in such samples. In the formulation of the weighted likelihood, an exponential weight discounts the

contribution of each datum based on the discrepancy of its distribution with that of the target population.

In the context of dependent data (e.g. smoothing), Hu et al. (2000b) use covariates to determine likelihood

weights, but not the response variables themselves. In a different setting where the distribution of data

stabilizes through time, Hu & Rosenberg (2000a) use weights that are determined by a function whose

parameter is set by minimizing the mean squared error of the resulting estimate.

Although the initial paradigm of the weighted likelihood allows each datum to come from a different

population, we rather adopt the same framework as Wang (2001), Wang & Zidek (2005) and Wang et al.

(2004) where data come as samples from m populations. In this context, one could hope to set the weights

based on scientific information, but it is more pragmatic and less arbitrary to determine them based on the

data.

Under this paradigm, neither an ad-hoc method suggested by Hu & Zidek (2002) nor the cross-validation

method explored by Wang & Zidek (2005) provide a satisfactory recipe for finding likelihood weights. The

cross-validation weights, for instance, lack numerical stability. Recently, Plante (2008) suggested nonpara-

metric adaptive weights whose formulation is based on heuristics showing that the weighted likelihood is a
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special case of the entropy maximization principle. Simulations show that the so-called MAMSE (minimum

averaged mean squared error) weights allow to outperform the likelihood under many scenarios.

Competing methods that borrow strength from a fixed number of samples typically rely on a hierarchical

model. By opposition, the MAMSE-weighted likelihood does not require to model the extra populations

and hence cannot be negatively affected by model misspecification on a population of secondary interest. In

situations where no hierarchical model arise naturally, this may constitute a major advantage.

The asymptotic properties of the weighted likelihood are studied by Hu (1997) for weights that do not

depend on the data. Asymptotics for adaptive weights are developed by Wang et al. (2004) under the

assumption that the weights asymptotically shift towards Population 1 at a certain rate. As Plante (2008)

points out, the MAMSE weights do not follow this behavior and hence require a special treatment.

In this paper, we study the asymptotic properties of the MAMSE weights, the MAMSE-weighted mixture

of empirical distribution functions and of the corresponding maximum weighted likelihood estimate (MWLE).

In Section 2, we introduce the weighted likelihood and the MAMSE weights formally. A sequence of lemmas is

presented in Section 3 to show that a MAMSE-weighted mixture of empirical distribution functions converges

uniformly to the target distribution. In Section 4, we prove that the MWLE is a strongly consistent estimate

by generalizing the proof of Wald (1949) for the likelihood. Section 5 discusses the asymptotic behavior of the

MAMSE weights themselves. The use of bootstrap methods is illustrated through simulations in Section 6.

The MAMSE-weighted MWLE offers better performances than the maximum likelihood estimate (MLE) in

many cases, yielding good coverage for shorter bootstrap confidence intervals.

2 The Weighted Likelihood and the MAMSE Weights

We introduce a notation that allows for increasing sample sizes as it will be useful for the remaining of this

manuscript.

Let (Ω,B(Ω), P ) be the sample space on which the random variables

Xij(ω) : Ω → IR, i = 1, . . . , m, j ∈ IN

are defined. The Xij are assumed to be independent with continuous distribution Fi.

We consider samples of nondecreasing sizes: for any positive integer k, the random variables {Xij : i =

1, . . . , m, j = 1, . . . , nik} are observed. Moreover, the sequences of sample sizes are such that n1k → ∞ as

k → ∞. We do not require that the sample sizes of the other populations tend to ∞, nor do we restrict the

rate at which they increase.

Suppose that Population 1 is of inferential interest. If we denote by f(x|θ) the family of distributions

used to model Population 1, the weighted likelihood and the weighted log-likelihood are written

L(θ) =
m∏

i=1

ni∏
j=1

f(Xij |θ)λi/ni and �(θ) =
m∑

i=1

λi

ni

ni∑
j=1

log f(Xij |θ)
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where the λi ≥ 0 are likelihood weights such that
∑m

i=1 λi = 1.

Let F̂ik(x) = (1/nik)
∑nik

j=1 11(Xij ≤ x) be the empirical distribution function (EDF) based on the sample

Xij , j = 1, . . . , nik. The empirical measure associated with F̂ik(x) allocates a weight 1/nik to each of the

observations Xij , j = 1, . . . , nik.

Plante (2008) shows heuristically that maximizing the weighted likelihood is comparable to maximizing

the proximity between the model f(x|θ) and a mixture of the m empirical distribution functions obtained

from the samples at hand. Such a mixture was considered before by Hu & Zidek (1993), Hu (1994) and Hu &

Zidek (2002) who called it relevance weighted empirical distribution function (REWED). By comparison,

the usual likelihood is akin to maximizing the entropy between f(x|θ) and F̂1k(x).

Inspired by the heuristics briefly described above, Plante (2008) tries to find weights that make the

mixture of EDFs
∑m

i=1 λiF̂ik(x) close to F̂1k(x), but less variable. He proposes the MAMSE objective

function.

Some preprocessing steps first discard any sample whose range of values does not overlap with that of

Population 1. For the remaining m samples, we write λ = [λ1, . . . , λm]T and minimize

Pk(λ) =
∫ ⎡⎣{F̂1k(x) −

m∑
i=1

λiF̂ik(x)

}2

+
m∑

i=1

λiv̂ar{F̂i(x)}

⎤⎦ dF̂1k(x) (1)

as a function of λ under the constraints λi ≥ 0 and
∑m

i=1 λi = 1. We proceed to the substitution

v̂ar{F̂i(x)} =
1

nik
F̂ik(x)

{
1 − F̂ik(x)

}
in Equation (1) based on the variance of the Binomial variable nikF̂i(x) for fixed x. The choice of dF̂1k(x)

allows to integrate where the target distribution F1(x) has most of its mass.

The MAMSE weights are the solution to the constrained minimization of Equation (1), we denote them

by μk = [μ1k, . . . , μmk]T, hence μk is a random variable on the probability space (Ω,B(Ω), P ).

The MAMSE weights are used to define an estimate of the distribution F1(x),

Ĝk(x) =
m∑

i=1

μikF̂ik(x),

the MAMSE-weighted EDF.

Whether a sample is rejected in the preprocessing or not may vary with k and ω. However, as the sample

sizes increase, the probability that a sample is rejected tends to zero unless the domain of possible values of

a Population does not overlap at all with that of Population 1, i.e. unless P (X11 < Xi1) = 0 or 1. Thus,

without loss of generality, we suppose that no samples are excluded by the preprocessing.

Note that the objective function Pk(λ) is quadratic and may also be written as

Pk(λ) = λ̃
T
Ākλ̃ − 2λ̃

T
1b̄k + b̄k (2)
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where

λ̃ =

⎡⎢⎢⎢⎣
λ2

...

λm

⎤⎥⎥⎥⎦ , Fk(x) =

⎡⎢⎢⎢⎣
F̂1k(x) − F̂2k(x)

...

F̂1k(x) − F̂mk(x)

⎤⎥⎥⎥⎦ , Vk(x) =

⎡⎢⎢⎢⎣
v̂ar{F̂2k(x)} 0

. . .

0 v̂ar{F̂mk(x)}

⎤⎥⎥⎥⎦ ,

Āk =
∫ [

Fk(x)Fk(x)T + Vk(x) + 11Tv̂ar
{
F̂1k(x)

}]
dF̂1k(x),

b̄k =
∫

v̂ar
{
F̂1k(x)

}
dF̂1k(x).

The constraint
∑m

i=1 λi = 1 is embedded in Equation (2), but the constraints λi ≥ 0 must be controlled

manually. See Plante (2007) or Plante (2008) for more details on the calculation of the MAMSE weights.

3 Asymptotic Properties

This section explores the large sample behavior of the weighted EDF. The proofs are deferred to the Ap-

pendix.

Lemma 3.1. For any ω ∈ Ω and k ∈ IN,
∫ ∣∣∣Ĝk(x) − F̂1k(x)

∣∣∣2 dF̂1k(x) ≤
(

n2
1k − 1
n2

1k

)
1

6n1k
.

Lemma 3.2. There exists Ω1 ⊂ Ω with P (Ω1) = 1 such that for all ω ∈ Ω1 and any fixed k ∈ IN,

max
x

∣∣∣Ĝk(x) − F̂1k(x)
∣∣∣ ≤ 1

n1k
+ max

j∈{1,...,n1k}

∣∣∣Ĝk(X1j) − F̂1k(X1j)
∣∣∣ .

Lemma 3.3. Let ak be an infinite sequence of positive numbers such that limk→∞ a3
k/n1k = 0. Then,

there exists Ω1 ⊂ Ω with P (Ω1) = 1 such that for all ε > 0, there exists a k0 such that ∀ω ∈ Ω1,

ak maxj∈{1,...,n1k}

∣∣∣Ĝk(X1j) − F̂1k(X1j)
∣∣∣ ≤ ε for all k ≥ k0.

Lemma 3.4. There exists Ω1 ⊂ Ω with P (Ω1) = 1 such that for all ε > 0, there exists k0 such that

maxx

∣∣∣Ĝk(x) − F̂1k(x)
∣∣∣ ≤ ε for all k ≥ k0 with the same k0 for all ω ∈ Ω1.

Theorem 3.1. The random variable supx

∣∣∣Ĝk(x) − F1(x)
∣∣∣ converges almost surely to 0.

The MAMSE-weighted mixture of EDF thus converges uniformly to the target distribution under rather

weak assumptions. In particular, Populations 2 to m are only required to have continuous distributions. We

see next that this implies a weighted strong law of large numbers.

Lemma 3.5. Consider any two distribution functions F and G from IR to [0, 1] such that supx |F (x)−G(x)| <

ε for some ε > 0. Then, for any connected set A ⊂ IR, | dF (A) − dG(A)| ≤ 2ε.

Theorem 3.2. Let g(x) be a function for which
∫
|g(x)| dF1(x) < ∞. The function g(x) is continuous on

IR except possibly on a finite set of points {d1, . . . , dL}. For each of populations 2, . . . , m at least one of

these two conditions hold: (1) the sample size is bounded: ∀k ∈ IN, nik ≤ Mi, (2)
∫
|g(x)| dFi(x) < ∞.

Further suppose that the sequences of sample sizes are non-decreasing with k for all populations. Then,∣∣∣∫ g(x) dĜk(x) −
∫

g(x) dF1(x)
∣∣∣→ 0 almost surely as k → ∞.
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Corollary 3.1. The Weighted Strong Law of Large Numbers. Let Xi denote a variable with distribution Fi.

Suppose E|Xi| < ∞ for i = 1, . . . , m, then
∑m

i=1(μik/nik)
∑nik

j=1 Xij → E(X1) almost surely as k → ∞.

Theorem 3.2 permits to prove the consistency of the MWLE by extending the proof of Wald (1949). This

extension is given next.

4 Consistency of the MWLE

In this section, we adapt the work of Wald (1949) to prove that the MWLE obtained with MAMSE weights

is a strongly consistent estimate.

4.1 Wald’s Assumptions

The assumptions of Wald (1949) are reproduced below and adapted as required to extend his proof to the

MWLE.

Let F (x|θ) be a parametric family of distributions where θ ∈ Θ, a closed subset of a finite dimensional

Cartesian space. We assume that ∃θ0 ∈ Θ such that F (x|θ0) ≡ F1(x). Wald (1949) does not assume that

F (x|θ0) is continuous in x, but we do and denote its corresponding density function by f(x|θ0).

The following notation is used by Wald (1949): ∀θ ∈ Θ, ρ > 0, f(x, θ, ρ) = sup|θ−θ′|≤ρ f(x|θ′) and ∀r > 0,

φ(x, r) = sup|θ|>r f(x|θ). In addition, f∗(x) = max{f(x), 1}.

Assumption 1. For all θ ∈ Θ, F (x|θ) is absolutely continuous for all x. Therefore, F (x|θ) admits a density

function f(x|θ).

Assumption 2. For sufficiently small ρ and sufficiently large r, the expressions
∫

log f∗(x, θ, ρ) dF1(x) and∫
log φ∗(x, r) dF1(x) are finite.

Assumption 3. If limi→∞ θi = θ, then limi→∞ f(x|θi) = f(x|θ).

Assumption 4. If θ1 �= θ0, then F (x|θ0) �= F (x|θ1) for at least one x.

Assumption 5. If limi→∞ |θi| = ∞, then limi→∞ f(x|θi) = 0.

Assumption 6.
∫
| log f(x|θ0)| dFi(x) < ∞ for i = 1, . . . , m.

Assumption 7. The parameter space Θ is a closed subset of a finite-dimensional Cartesian space.

Assumption 8. The functions f(x, θ, ρ) and φ(x, r) are measurable for any θ, ρ and r.

Assumption 9. The functions f(x|θ0), f(x, θ, ρ) and φ(x, r) are continuous except possibly on a finite set

of points {d1, . . . , dL}. The set of discontinuities may depend on θ, ρ or r, but must be finite for any

fixed values of these parameters.

5



Assumptions 1 to 8 are from Wald (1949); only Assumption 6 is modified to cover the m populations

of our paradigm. Assumption 9 is required to ensure that Theorem 3.2 applies. Lemmas 4.4 and 4.5 of

Section 4.2 help in determining if the family of distributions F (x|θ) respects this new assumption.

Note that the assumptions above are mostly concerned with the family of distributions F (x|θ), the model,

rather than the true distribution of the data.

4.2 Wald’s Lemmas

Wald’s lemmas (4.1, 4.2 and 4.3) do not need to be modified. We state them for completeness, but do not

reproduce their proofs already provided in Wald (1949).

For expectations, the following convention is adopted. Let U be a random variable. The expected

value of U exists if E{max(U, 0)} < ∞. If E{max(U, 0)} is finite but E{min(U, 0)} is not, we say that

E{min(U, 0)} = −∞. Moreover, a generic X represents a random variable with distribution F1(x) ≡ F (x|θ0).

Lemma 4.1. For any θ �= θ0, we have E log f(X |θ) < E log f(X |θ0).

Lemma 4.2. lim
ρ→0

E log f(X, θ, ρ) = E log f(X |θ).

Lemma 4.3. The equation limr→∞ E logφ(X, r) = −∞ holds.

The next two lemmas are useful in determining if Assumption 9 is respected; their proof is found in the

Appendix.

Lemma 4.4. Let f(x, θ) be continuous for all θ ∈ Θ and x ∈ Nx1 , a neighborhood of x1. Then for θ0 and ρ

fixed, f(x, θ0, ρ) is continuous at x1.

By Lemma 4.4, if f(x|θ) is continuous in x and θ, then f(x, θ0, ρ) is continuous in x for any fixed θ0 and

ρ.

Before introducing Lemma 4.5, define ωg(δ, x0) = sup|x−x0|<δ |g(x) − g(x0)|, the modulus of continuity

of the function g(x) around x0. Note that when it exists, limδ→0 ωg(δ, x0)/δ = |g ′(x0)| .

Lemma 4.5. Suppose that f(x, θ) is continuous in θ and that φ(x, r) has a discontinuity at x0. Then, there

exists ε > 0 such that ωf(·,θ)(δ, x0) > ε for any δ > 0 and some θ.

Note that if g(x) is continuous at x0, limδ→0 ωg(δ, x0) = 0. In fact, the modulus of continuity ωf(·,θ)(δ, x0)

will have a lower bound as δ → 0 when: (1) there is a discontinuity in the function f(x|θ) at x0, or (2) as

θ → ∞, the slope of f(x, θ) around x0 keeps increasing. Therefore, discontinuities in φ(x, r) will occur if

f(x|θ) is discontinuous itself, or if f(x|θ) has a peak that can become arbitrarily steep (i.e. its slope is not

bounded for a fixed x as θ varies). The main result of this paper uses Theorem 3.2 which allows a finite

number of discontinuities. Therefore, as long as f(x|θ) is a continuous model such that the set

{x : even for large r > 0, ωf(·|θ)(δ, x) is arbitrarily large for some |θ| > r}

= {x : f(x|θ) has an arbitrarily steep peak at x for some |θ| > r}
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is empty or made up of a finite number of singletons, Assumption 9 will hold.

4.3 Main Result

We now turn to the main results of this section.

Theorem 4.1. Let T be any closed subset of Θ that does not contain θ0. Then,

P

{
lim

k→∞

supθ∈T
∏m

i=1

∏nik

j=1 f(Xij |θ)μikn1k/nik∏m
i=1

∏nik

j=1 f(Xij |θ0)μikn1k/nik
= 0

}
= 1.

Proof of Theorem 4.1. Let X denote a random variable with distribution F1(x) ≡ F (x|θ0) and let r0 be a

positive number chosen such that

E{logφ(X, r0)} < E{log f(X |θ0)}. (3)

The existence of such an r0 follows from Lemma 4.3 and Assumption 6. Then, T1 = {θ : θ ≤ r0} ∩ T

is a compact set since it is a closed and bounded subset of a finite-dimensional Cartesian space. With each

element θ ∈ T1, we associate a positive value ρθ such that

E{log f(X, θ, ρθ)} < E{log f(X |θ0)}. (4)

The existence of such ρθ follows from Lemma 4.1 and 4.2. Let S(θ, ρ) denote the sphere with center θ and

radius ρ. The spheres {S(θ, ρθ)} form a covering of the compact T1, hence there exists a finite sub-covering.

Let θ1, . . . , θh ∈ T1 such that T1 ⊂
⋃h

s=1 S(θs, ρθs). Clearly,

0 ≤ sup
θ∈T

m∏
i=1

nik∏
j=1

f(Xij |θ)μikn1k/nik ≤
h∑

s=1

m∏
i=1

nik∏
j=1

f(Xij , θs, ρθs)
μikn1k/nik +

m∏
i=1

nik∏
j=1

φ(Xij , r0)μikn1k/nik .

Therefore, to prove Theorem 4.1 if suffices to show that

P

{
lim

k→∞

∏m
i=1

∏nik

j=1 f(Xij , θs, ρθs)μikn1k/nik∏m
i=1

∏nik

j=1 f(Xij |θ0)μikn1k/nik
= 0

}
= 1

for s = 1, . . . , h and that

P

{
lim

k→∞

∏m
i=1

∏nik

j=1 φ(Xij , r0)μikn1k/nik∏m
i=1

∏nik

j=1 f(Xij |θ0)μikn1k/nik
= 0

}
= 1.

The above equations can be rewritten as

P

[
lim

k→∞
n1k

{
m∑

i=1

nik∑
j=1

μik

nik
log f(Xij , θs, ρθs) −

μik

nik
log f(Xij |θ0)

}
= −∞

]
(5)

= P

[
lim

k→∞
n1k

{∫
log f(x, θs, ρθs) dĜk(x) −

∫
log f(x|θ0) dĜk(x)

}
= −∞

]
= 1

for s = 1, . . . , h and

P

[
lim

k→∞
n1k

{
m∑

i=1

nik∑
j=1

μik

nik
log φ(Xij , r0) −

μik

nik
log f(Xij |θ0)

}
= −∞

]
(6)

= P

[
lim

k→∞
n1k

{∫
log φ(x, r0) dĜk(x) −

∫
log f(x|θ0) dĜk(x)

}
= −∞

]
= 1
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respectively. Assumptions 6 and 9 insure that Theorem 3.2 applies to the integrals above, each of these con-

verging almost surely to
∫

log f(x, θs, ρθs) dF1(x),
∫

log φ(x, r0) dF1(x) or
∫

log f(x|θ0) dF1(x). Combining

this result with Equations (3) and (4), we have that (5) and (6) hold. Hence the proof of Theorem 4.1 is

complete.

Theorem 4.2. Let θ̂k(ω) be a sequence of random variables such that there exists a positive constant c with∏m
i=1

∏nik

j=1 f{Xij |θ̂k(ω)}μikn1k/nik∏m
i=1

∏nik

j=1 f(Xij |θ0)μikn1k/nik
≥ c > 0 (7)

for all k ∈ IN and all ω ∈ Ω. Then P
{
limk→∞ θ̂k(ω) = θ0

}
= 1.

Proof of Theorem 4.2. Let ε > 0 and consider the values of θ̂k(ω) as k goes to infinity. Suppose that θ� is

an accumulation point away from θ0, such that |θ� − θ0| > ε. Then,

sup|θ−θ0|≥ε

∏m
i=1

∏nik

j=1 f(Xij |θ)μikn1k/nik∏m
i=1

∏nik

j=1 f(Xij |θ0)μikn1k/nik
≥ c > 0

infinitely often. By Theorem 4.1, this event has probability 0 even with ε arbitrarily small. Therefore,

P{ω : | limk→∞ θ̂k(ω) − θ0| ≤ ε} = 1 for all ε > 0.

Corollary 4.1. The MWLE is a strongly consistent estimate of θ.

Proof of Corollary 4.1. The MWLE clearly satisfies Equation (7) with c = 1 because θ̂k(ω) is then chosen

to maximize the numerator of (7).

5 Asymptotic Behavior of the Weights

We study the asymptotic behavior of the MAMSE weights as k → ∞ and its consequences in constructing

a weighted central limit theorem. Let

L =

{
λ :

m∑
i=1

λiFi(x) ≡ F1(x)

}

where ≡ indicates that the functions are equal for all x. Clearly, L is a nonempty convex set with

[1, 0, . . . , 0]T ∈ L. Moreover, if we consider the elements of L as elements of the normed space ([0, 1]m, || · ||)

where || · || stands for the Euclidean norm, then LC is an open set.

We will show that for k ∈ IN, all accumulation points of the MAMSE weights will be in the set L. In

other words, the MAMSE weights can only converge to vectors that define a mixture distribution identical

to the target distribution.

Theorem 5.1. Suppose that LC �= ∅ and let λ∗ ∈ LC , then for any ε > 0, there exists a set Ω0 of probability

1 such that ||λ∗ − μk|| > ε i.o. for all ω ∈ Ω0 and hence the MAMSE weights do not converge to λ∗ as

k → ∞.
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Corollary 5.1. Consider the sequence of MAMSE weights μk for ω fixed and k ∈ IN. Let λ be an accumu-

lation point of the sequence μk, then λ ∈ L.

Corollary 5.2. If L is a singleton, then L = {[1, 0, . . . , 0]T} and μk → [1, 0, . . . , 0]T almost surely as k → ∞.

In the case where L is not a singleton, the MAMSE weights do not seem to converge to any particular

point. Corollary 5.1 indicates that any accumulation point will be in L, but it seems that the neighborhood

of many points in L is visited infinitely often.

Based on simulations, we have not found any evidence showing that a MAMSE-weighted sum of random

variables is not asymptotically normal. A formal proof showing the asymptotic distribution of such a sum

remains however to be found. The fact that the weights depend on the data complicates the situation, but

there is more.

When a mixture of the distributions of populations 2, . . . , m is identical to F1(x), accumulation points

of μk will be in L, but they may remain random on L even for infinitely large sample sizes. This behavior

is observed in some simulations of Plante (2008). The lack of convergence to a singleton eliminates many

strategies of proof, the use of Slutsky’s theorem for instance.

One could hope that proving normality would at least be possible under the hypothesis of Corollary 5.1

when the MAMSE weights converge to [1, 0, . . . , 0]T. If the convergence occurs at a rate of 1/
√

n1k or faster,

the results of Wang et al. (2004) may apply. Determining the rate of convergence of the MAMSE weights is

however not straightforward and may require the characterization of the shapes of each Fik(x) compared to

F1k(x) as well as limitations on the speeds of incrementation of the sample sizes.

Until somebody finds a strategy to bypass these complications, we suggest to use resampling methods to

produce confidence intervals or tests. Such methods are illustrated in the next section.

6 Bootstrap Simulation

The simulations of Plante (2006) show that the mean squared error (MSE) of the WMLE is often smaller

than that of the MLE under different scenarios. We do not repeat such simulations here, but rather illustrate

the construction of confidence intervals (CI) for the MWLE using parametric and nonparametric bootstrap.

We also calculate bootstrap intervals based on the sample from Population 1 alone and compare their lengths

and coverage probabilities.

For nonparametric bootstrap, sampling with replacement is performed on each of the m populations,

thus creating a pseudo-sample for each of them. The MWLE is calculated on a large number (set to 1000)

of such pseudo-samples and confidence intervals are built by taking quantiles from these simulated MWLEs.

Nonparametric bootstrap involves numerous ties in all samples. While our theoretical results assume the

continuity of the distributions, the calculation of the weights themselves and hence of the MWLE hold in

the presence of ties.

9



Figure 1: Relative length of the confidence intervals (weighted/normal) for parametric and nonparametric

bootstrap. Ratios below one indicate that the weighted methods yielded a shorter interval. Each boxplot is

based on 10000 simulated sample.

Parametric bootstrap allows to avoid ties, but requires modeling each population. The MLE of each

Population is determined and pseudo-samples are drawn from the fitted distribution rather than through

resampling.

6.1 Normal Distribution

We first consider the ubiquitous normal case. Samples of size n and 10n respectively are generated from:

Pop. 1 : N (0, 1), Pop. 2 : N (Δ, 1).

Confidence intervals for the MLE and the MWLE are built using parametric and nonparametric bootstrap.

The process is repeated for 10000 samples and hence yields 10000 intervals.

Figure 1 displays the relative length (length of CI for the MWLE/length of CI for the MLE) of the 10000

intervals obtained using the two different bootstrap methods. Values below 1 indicate a shorter interval for

the MAMSE-weighted method. To improve the readability of the boxplots in the presence of extreme values,

only the minimum and maximum values are drawn as points; dotted lines links them to the whiskers.

The weighted method often yields a shorter interval than the equivalent bootstrap method based on

Population 1 alone, especially for small n and Δ. For larger n and Δ, the performance of the weighted

methods are comparable to that of their unweighted counterparts, with occasional small losses.

The estimated coverage probabilities of the different methods appear in Table 1. The coverage of the

CI for the MWLE is similar to that obtained for the MLE with the corresponding method. The shorter

intervals observed in Figure 1 do not seem to be the consequence of systematically biased intervals.

We also use bootstrap to test the null hypothesis that μ = 0. We base that test on a 2-sided confidence

interval built using bootstrap. Figure 2 displays power graphs for that test. The power of the test is evaluated

for different values of μ. To compensate for the added computations, each point is based on 1000 replicates

rather than 10000. The weighted method corresponds to the dotted line. Note that the curves are smoothed.
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Nonparametric Parametric

n Normal Weighted Normal Weighted

20 92.6 93.0 93.3 93.8

Δ = 0 50 94.0 94.0 94.0 94.4

200 94.8 95.1 95.0 95.4

20 92.4 92.4 93.3 93.0

Δ = 0.1 50 93.8 92.8 94.1 93.0

200 94.7 92.1 94.9 91.5

20 92.9 91.0 93.6 91.4

Δ = 0.5 50 94.0 92.5 94.5 92.7

200 94.8 94.3 94.8 94.3

20 92.5 91.0 93.2 91.9

Δ = 1 50 94.2 93.3 94.4 93.5

200 94.7 94.5 94.9 94.5

Table 1: Coverage probability of bootstrap confidence intervals for different methods. Each proportion is

based on 10000 simulated samples; 1000 pseudo-samples are used on each of them to build the confidence

intervals.

Figure 2: Power of a bootstrap test for H : μ = 0. For different values of μ, 1000 samples were drawn and

bootstrapped. Each bootstrap simulation is based on 1000 pseudo-samples. The curves are smoothed.
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For small values of Δ, the test based on the weighted method is uniformly more powerful. The MAMSE

weights attempt to trade bias for precision. The gain in precision can be seen with the narrower curve

allowing a more powerful test for small values of Δ. When Δ gets larger, bias increases and the power curve

starts shifting. Eventually, the test on the MWLE is less powerful for a range of values of μ.

6.2 Gamma Distribution

We reuse the scenario of Simulation 5.4 from Plante (2006) where the magnitude of earthquakes from

three neighborhooding areas of Western Canada are considered. These three areas are respectively: Lower

Mainland – Vancouver Island, rest of British Columbia and Alberta, Yukon and North West Territories. The

magnitudes are modeled as independent gamma variables whose parameters are determined from 5 years of

observed data. The gamma distribution is parametrized as

f(x|β, μ) =
ββμ

Γ(βμ)
xβμ−1e−βx

for β, μ, x > 0 and the estimated parameters are

Pop. 1 :

⎧⎨⎩ μ = 1.437

β = 1.654
, Pop. 2 :

⎧⎨⎩ μ = 1.869

β = 2.357
, Pop. 3 :

⎧⎨⎩ μ = 2.782

β = 6.806
.

Equal samples of size n = 50 are drawn from each populations. The goal being to infer about Population 1,

the MLE is based on Population 1 alone, but the MWLE uses the samples from the 3 populations.

We first estimate the vector of parameters (μ, β). For the purpose of this simulation, we build non-

parametric bivariate 95% confidence sets for [log(μ), log(β)] based on Tukey’s depth as described by Yeh &

Singh (1997). The log transformation allows a better fit since the method yields convex sets. The algorithm

developed by Rousseeuw & Ruts (1996) is used to calculate Tukey’s depth. The coverage provided by each

method is evaluated and the area of the confidence sets (on the log scale) is use to compare their sizes.

Earthquakes are usually not felt unless their magnitude reaches about 3 on the Richter scale. Hence,

we also estimate the probability that the magnitude of an earthquake in the Lower Mainland – Vancouver

Island area reaches that threshold by plugin the estimated parameters in the Gamma model. We use different

bootstrap methods to build confidence intervals for that probability that we denote P (M > 3).

The estimated coverage probabilities appear in Table 2. They are all a bit below the 95% target.

Interestingly, the weighted methods all yield coverages closer to 95% than the bootstrap based on Population 1

alone. Figure 4 shows the size of the confidence sets obtained in this simulation.

The confidence regions for the vector of parameters [log β, log μ] seem smaller when the weighted bootstrap

is used. For the prediction of P (M > 3), the weighted method seems to yield negligibly longer intervals but

achieves a more accurate coverage.

More extensive simulations could be performed to describe the advantages and limitations of using boot-

strap to determine the variance of the MWLE. The simulations presented above however show that bootstrap
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Figure 3: Examples of bivariate 95% confidence sets based on Tukey’s depth. The confidence sets are built

using log scales to offer a better fit with the convexity of Tukey’s depth contours. The points on the graphs

above are 1000 bootstrap replicates of [log β̂, log μ̂] derived from a single set of samples (n = 50 for all three

populations).

Coverage in %

Bootstrap Estimate (μ, β) P (M > 3)

Normal 86.1 90.8
Nonparametric

Weighted 86.9 93.0

Normal 89.3 92.9
Parametric

Weighted 89.7 94.5

Table 2: Coverage probability of the different methods of constructing confidence sets for a bivariate gamma

parameter and for an estimate of P (M > 3). Each proportion is based on 10000 replicates each calculated

from 1000 pseudo-samples.
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Figure 4: Area or length of the bootstrap confidence sets for estimating [log β, log μ] or P (M > 3). Each

boxplot is based on 10000 replicates.

confidence intervals or confidence sets seem to behave well with MAMSE-weighted methods. Ideally, the

convergence of bootstrap estimates should be proved theoretically, but this is left to future work

7 Conclusion

The weighted likelihood allows to borrow strength from similar population while making parametric assump-

tions on the population of interest only. The method has been in the literature for a few years already, but

the lack of a reliable method to determine likelihood weights seemed to limit its use.

Plante (2008) proposes a heuristic justification of the weighted likelihood that links the weights to a mix-

ture of empirical distribution functions and leads to defining the nonparametric adaptive MAMSE likelihood

weights. Simulations therein show that the MWLE with MAMSE weights has a lower mean squared error

than the MLE in many cases of interest.

This paper studies the asymptotic properties implied by the MAMSE weights. In particular, we show

that the MAMSE-weighted mixture of empirical distributions converges uniformly to the target distribution

and that the MWLE is a strongly consistent estimate when used in conjunction with the MAMSE weights.

These consistency results hold with very weak assumptions on the distributions underlying the m populations.

Hence, the MAMSE weights succeed in determining what population may be useful to the inference or not

without relying on a parametric statistical model.

The asymptotic distribution of the MWLE with MAMSE weights is not known at this point. In the

simulations presented, the bootstrap behaved well with the weighted methods. Until more research allows

to determine an approximate distribution for the MWLE, bootstrap can be used for practical applications

based on the MAMSE weights.

Natural extensions of this work include the study of the rate of convergence of the MAMSE-based
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statistics and the asymptotic distributions thereof. The theory for discrete distributions could also be

developed. Extensions of the MAMSE weights to censored and multivariate data have also been studied by

Plante (2007) and could be further developed.

A Proofs

Below are the proofs of the results of sections 3 and 4.2.

Proof of Lemma 3.1. For any ω ∈ Ω and k ∈ IN, consider

I
Δ=
∫ ∣∣∣Ĝk(x) − F̂1k(x)

∣∣∣2 dF̂1k(x) ≤
∫ ∣∣∣Ĝk(x) − F̂1k(x)

∣∣∣2 +
m∑

i=1

μ2
ik

nik
F̂ik(x)

{
1 − F̂ik(x)

}
dF̂1k(x).

By definition, the MAMSE weights minimize the expression above. The suboptimal choice of weights

[λ1, . . . , λm] = [1, 0, . . . , 0] cannot lead to a smaller value of I, i.e.

I ≤
∫

1
n1k

F̂1k(x)
{

1 − F̂1k(x)
}

dF̂1k(x) =
1

n2
1k

n1k∑
j=1

j

n1k

(
1 − j

n1k

)
=
(

n2
1k − 1
n2

1k

)
1

6n1k
.

This bound is tight since the optimal λ could be arbitrarily close to the vector [1, 0, . . . , 0]T, making I

arbitrarily close to the bound above. For instance, letting n1k → ∞ while the other nik’s are held constant

will do the trick.

Proof of Lemma 3.2. Define Ω0 = {ω ∈ Ω : ∃i, i′, j, j′ with (i, j) �= (i′, j′) and Xij = Xi′j′} . Since the dis-

tributions Fi are continuous, P (Ω0) = 0. Fix k ∈ IN and consider any fixed ω ∈ Ω1 = Ω\Ω0. Note

that for i ∈ {1, . . . , m} and j ∈ {1, . . . , nik}, [mini,j Xij , maxi,j Xij ] is a compact set outside of which

D(x) = |Ĝk(x)− F̂1k(x)| ≡ 0. Let x0 be a value maximizing the bounded function D(x). We treat two cases.

Case 1: Ĝk(x0) ≤ F̂1k(x0).

Define x1 = max{X1j : j = 1, . . . , n1k, X1j ≤ x0}, the largest data point less than x0 found in Population

1. The step function F̂1k(x) is right-continuous, nondecreasing and has equal steps of size 1/n1k at each

observation X1j . By the choice of x1, and the definition of the EDF, F̂1k(x1) = F̂1k(x0). The step function

Ĝk(x) is nondecreasing, thus Ĝk(x1) ≤ Ĝk(x0). Consequently,

|Ĝk(x0) − F̂1k(x0)| = F̂1k(x0) − Ĝk(x0) ≤ F̂1k(x1) − Ĝk(x1) ≤
1

n1k
+ max

j∈{1,...,n1k}

∣∣∣F̂1k(X1j) − Ĝk(X1j)
∣∣∣ .

Case 2: Ĝk(x0) ≥ F̂1k(x0).

Define x2 = min{X1j : j = 1, . . . , n1k, X1j > x0}, the smallest data point exceeding x0 found in Population

1. The step function F̂1k(x) is right-continuous, nondecreasing and has equal steps of size 1/n1k at each

observation X1j . Therefore, F̂1k(x2) = 1/n1k + F̂1k(x0). Since Ĝk(x) is nondecreasing, Ĝk(x2) ≥ Ĝk(x0).
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Consequently,

|Ĝk(x0) − F̂1k(x0)| = Ĝk(x0) − F̂1k(x0) ≤ Ĝk(x2) − F̂1k(x2) +
1

n1k

≤ 1
n1k

+ max
j∈{1,...,n1k}

∣∣∣F̂1k(X1j) − Ĝk(X1j)
∣∣∣

which completes the proof.

Proof of Lemma 3.3. Let ε > 0. Consider an arbitrary but fixed ω ∈ Ω1 = Ω\Ω0 where Ω0 has the same

definition as in the proof of Lemma 3.2.

Suppose that Lemma 3.3 is false. Then there exists an infinite sequence k� such that for � ∈ IN,∣∣∣Ĝk�
{X1(j0�)} − F̂1k�

{X1(j0�)}
∣∣∣ > εk�

=
ε

ak�

(8)

for some j0� ∈ {1, 2, . . . , n1k�
}, where parentheses in the index identify order statistics, i.e. X1(j) is the jth

smallest value among X11, . . . , X1n1k�
.

Consider a fixed value of �. For simplicity, we drop the index � and revert to k and j0 that are fixed. Note

that Ĝk(x) is a nondecreasing function, ans that F̂1k(x) is a right-continuous nondecreasing step function

with equal jumps of 1/n1k. We treat two cases:

Case 1: Ĝk{X1(j0)} ≥ F̂1k{X1(j0)}.

Note that F̂1k{X1(j0)} ≤ Ĝk{X1(j0)} ≤ 1 and hence, F̂1k{X1(j0)} ≤ 1 − εk or inequality (8) would not hold.

Consequently, j0 ≤ n1k − �εkn1k� and for i ∈ {0, 1, . . . , �εkn1k�}, we have Ĝk{X1(j0+i)} ≥ Ĝk{X1(j0)} and

F̂1k{X1(j0+i)} = F̂1k{X1(j0)} + ı/n1k and hence

Ĝk{X1(j0+i)} − F̂1k{X1(j0+i)} ≥ Ĝk{X1(j0)} − F̂1k{X1(j0)} −
i

n1k
≥ εk − i

n1k
.

Case 2: Ĝk{X1(j0)} ≤ F̂1k{X1(j0)}.

Note that F̂1k{X1(j0)} ≥ Ĝk{X1(j0)} ≥ 0. Since both functions are at least εk apart, F̂1k{X1(j0)} ≥ εk and

thus j0 ≥ �εkn1k�. Then for i ∈ {0, 1, . . . , �εkn1k�}, we have Ĝk{X1(j0−i)} ≤ Ĝk{X1(j0)} and F̂1k{X1(j0−i)} =

F̂1k{X1(j0)} − i/n1k and hence

F̂1k{X1(j0−i)} − Ĝk{X1(j0−i)} ≥ F̂1k{X1(j0)} − Ĝk{X1(j0)} −
i

n1k
≥ εk − i

n1k
.

Then, for both cases,∫
|Ĝk(x) − F̂1k(x)|2 dF̂1k(x) ≥ 1

n1k

	εkn1k
∑
i=0

|Ĝk{X1(j0−i)} − F̂1k{X1(j0−i)}|2

≥ 1
n1k

	εkn1k
∑
i=0

(
εk − i

n1k

)2

≥ 1
n3

1k

	εkn1k
∑
i=0

i2 ≥ 1
3

(
�εkn1k�

n1k

)3

By Lemma 3.1, we thus have that

1
3

(
εkn1k − 1

n1k

)3

≤ 1
3

(
�εkn1k�

n1k

)3

≤ 1
6n1k

⇔
(

εn1k

ak
− 1
)3

≤ n2
1k

2
⇔ ak

n
2/3
1k + 21/3

n1k
≥ 21/3ε,
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a contradiction since a3
k/n1k → 0 and k� → ∞ as � → ∞, i.e. the left-hand term converges to 0. Therefore,

we know that ∀ε > 0, ∃k0 such that ∀k ≥ k0, ak maxj∈{0,...,n1k}

∣∣∣Ĝk(X1j) − F̂1k(X1j)
∣∣∣ ≤ ε. Since k0 does not

depend on ω ∈ Ω1 and P (Ω1) = 1, the uniform convergence is almost sure.

Proof of Lemma 3.4. Consider the set Ω1 defined from Lemma 3.2. By Lemma 3.3, ∀ε > 0, ∃k1 such that

∀k ≥ k1, maxj∈{1,...,n1k}

∣∣∣Ĝk(X1j) − F̂1k(X1j)
∣∣∣ ≤ ε/2 for all ω ∈ Ω1. Moreover, ∃k2 such that ∀k ≥ k2,

1/n1k ≤ ε/2. Then by Lemma 3.2, ∀ω ∈ Ω1, we have 0 ≤ maxx

∣∣∣Ĝk(x) − F̂1k(x)
∣∣∣ ≤ ε/2 + ε/2 = ε for all

k ≥ k0 = max(k1, k2).

Proof of Theorem 3.1. By Lemma 3.4, ∀ε > 0, ∃k1 such that maxx

∣∣∣Ĝk(x) − F̂1k(x)
∣∣∣ < ε/2, ∀k ≥ k1 and

any ω ∈ Ω1 with P (Ω1) = 1. The Glivenko-Cantelli theorem states that supx

∣∣∣F̂1k(x) − F1(x)
∣∣∣ → 0 almost

surely as k → ∞. Hence, there exists Ω2 ⊂ Ω with P (Ω2) = 1 such that ∀ε > 0 and ω ∈ Ω2, ∃k2(ω) with

supx

∣∣∣F̂1k(x) − F1(x)
∣∣∣ < ε/2, ∀k ≥ k2(ω). Consider now Ω0 = Ω1 ∩ Ω2 and k0(ω) = max{k1, k2(ω)}. Note

that we have P (Ω0) ≥ P (Ω1) + P (Ω2) − 1 = 1. For any fixed ω, k and x, the inequality
∣∣∣Ĝk(x) − F̂1(x)

∣∣∣ ≤∣∣∣Ĝk(x) − F̂1k(x)
∣∣∣+ ∣∣∣F̂1k(x) − F̂1(x)

∣∣∣ holds, hence for any ω ∈ Ω0 and all k ≥ k0(ω) we have

sup
x

∣∣∣Ĝk(x) − F1(x)
∣∣∣ ≤ sup

x

∣∣∣Ĝk(x) − F̂1k(x)
∣∣∣+ sup

x

∣∣∣F̂1k(x) − F1(x)
∣∣∣ ≤ ε.

Therefore, supx

∣∣∣Ĝk(x) − F1(x)
∣∣∣ converges almost surely to 0.

Proof of Lemma 3.5. Let B = [a, b] ⊂ IR and define Bδ = (a − δ, b] for δ > 0. Let

eδ = | dF (Bδ) − dG(Bδ)| = |F (b) − F (a − δ) − G(b) + G(a − δ)|

≤ |F (b) − G(b)| + |F (a − δ) − G(a − δ)| ≤ 2ε

for all δ > 0. Since δ can be arbitrarily small, | dF (B) − dG(B)| ≤ 2ε. The result holds for any combination

of closed or open boundaries with minor changes to the proof.

Proof of Theorem 3.2. We show that for any ε > 0, we can find a sequence of inequalities that that imply

that
∣∣∣∫ g(x) dĜk(x) −

∫
g(x) dF1(x)

∣∣∣ < ε for any large enough k. The inequalities come from truncating g

and approximating it by a step function.

For t ∈ IN, let Dt = ∩L
�=1(d�−2−t, d�+2−t)C , Bt = [−t, t]∩Dt and τt(x) = g(x)11Bt(x) where 11B(x) is an

indicator function equal to 1 if x ∈ B and otherwise null. Since g(x) is continuous and Bt is a compact set,

the image of τt is bounded, say τt(x) ∈ [Lt, Ut]. By the Heine-Cantor Theorem, τt is uniformly continuous

on Bt, i.e. ∀ετ,t > 0, ∃δτ,t > 0 such that

∀x1, x2 ∈ Bt, |x1 − x2| ≤ δτ,t =⇒ |τt(x1) − τt(x2)| ≤ ετ,t.

Let ετ,t = 2−t and choose 0 < δτ,t < 2−t accordingly. For s = 1, . . . , St, where St = �2t/δτ,t�, let Ast =

[−t + (s − 1)δτ,t, −t + sδτ,t) ∩ Bt. In the rare case where 2t/δτ,t is an integer, we let ASt,t = [2t − δτ,t, 2t].

The sets Ast form a partition of the compact set Bt. Note that the choice of Dt and δτ,t ensures that Ast
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are connected, with the harmless exception of ASt,t which could sometimes consist of two singletons. Define

ht(x) =
∑St

s=1 bst11Ast(x) where bst = infy∈Ast g(y). Then, by construction, supx |τt(x) − ht(x)| ≤ 2−t and∣∣∣∣∫ g(x) dĜk(x) −
∫

g(x) dF1(x)
∣∣∣∣ ≤ T1 + T2 + T3 + T4 + T5 (9)

where
T1 =

∣∣∣∫ g(x) dĜk(x) −
∫

τt(x) dĜk(x)
∣∣∣ , T2 =

∣∣∣∫ τt(x) dĜk(x) −
∫

ht(x) dĜk(x)
∣∣∣ ,

T3 =
∣∣∣∫ ht(x) dĜk(x) −

∫
ht(x) dF1(x)

∣∣∣ , T4 =
∣∣∫ ht(x) dF1(x) −

∫
τt(x) dF1(x)

∣∣ ,
T5 =

∣∣∫ τt(x) dF1(x) −
∫

g(x) dF1(x)
∣∣ .

We will now prove that for any ε > 0 and ω in a subset of Ω with probability 1, we can choose tω such that

the five terms above are less than ε/5 for all k ≥ kω(tω).

To begin, note that T4 =
∣∣∫ ht(x) − τt(x) dF1(x)

∣∣ ≤ ∫ |ht(x) − τt(x)| dF1(x) ≤ 2−t by construction. The

same bound applies for T2 and does not depend on k or ω.

By Theorem 3.1, supx |Ĝk(x)−F1(x)| converges almost surely to 0. Therefore, ∃Ω0 ⊂ Ω with P (Ω0) = 1

such that for each ω ∈ Ω0 and any t, ∃kω,t with supx |Ĝk(x) − F1(x)| < 1/{St max(|Ut|, |Lt|)2t+1} for all

k ≥ kω,t. For any such k and ω, Lemma 3.5 implies that∣∣∣ dĜk(Ast) − dF1(Ast)
∣∣∣ ≤ 2

St max(|Ut|, |Lt|)2t+1

for any s = 1, . . . , St. Developing T3 yields

T3 =

∣∣∣∣∣
St∑

s=1

bst dĜk(Ast) −
St∑

s=1

bst dF1(Ast)

∣∣∣∣∣ ≤
St∑

s=1

|bst| ·
∣∣∣dĜk(Ast) − dF1(Ast)

∣∣∣
≤ St max(|Ut|, |Lt|)

2
St max(|Ut|, |Lt|)2t+1

=
1
2t

.

Therefore, ∃t1 such that 2−t < ε/5 for all t ≥ t1, i.e. T2, T3 and T4 are each bounded by ε/5 for any

t ≥ t1 and k ≥ kω,t.

We can write T5 =
∣∣∫ g(x)11Bc

t
(x) dF1(x)

∣∣ ≤ ∫ |g(x)|11Bc
t
(x) dF1(x) → 0 as t → ∞ since the integrand

goes to 0 for each x ∈ IR\{d1, . . . , dL} by the dominated convergence theorem with bounding function |g(x)|.

The integrand does not converge to 0 on {d1, . . . , dL}, but that set has measure 0. Therefore, there exists t2

such that T5 < ε/5 for all t ≥ t2.

Turning now to T1, we denote by I ⊂ {1, . . . , m} the indices corresponding to the populations for which

nik → ∞ as k → ∞. By the strong law of large numbers, for any fixed t, there exists Ωi,t ⊂ Ω with P (Ωi,t) = 1

such that for all ω ∈ Ωi,t,
∑nik

j=1 |g{Xij}|11Bc
t
(Xij) converges to

∫
|g(x)|11Bc

t
(x) dFi(x) as k → ∞. Consider a

fixed ω ∈ Ω1 = {ω|Xij = d� for some i, j, �}C ∩ {∩i∈I,t∈INΩi,t}. The intersection is over a countable number

of sets of probability 1, hence P (Ω1) = 1. For any such ω ∈ Ω1, T1 is developed as

T1 =
∣∣∣∣∫ g(x)11Bc

t
(x) dĜk(x)

∣∣∣∣ ≤ ∫ |g(x)|11Bc
t
(x) dĜk(x) ≤

m∑
i=1

1
nik

nik∑
j=1

|g(Xij)|11Bc
t
(Xij).

Since ω is fixed, ∃t∗ω such that 11Bc
t
(Xij) ≡ 0, ∀i ∈ IC , j = 1, . . . , niMi , t ≥ t∗ω. For i ∈ I, the dominated

convergence theorem says that there exists t∗i such that
∫
|g(x)|11Bc

t
(x) dFi(x) < ε/(10m) for all t ≥ t∗i .
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Choose t ≥ t3 = maxi∈I t∗i . Since ω ∈ Ω1, ∃ki,t,ω such that for all k ≥ ki,t,ω,

1
nik

nik∑
j=1

|g{Xij}|11Bc
t
(Xij) ≤

∫
|g(x)|11Bc

t
(x) dFi(x) +

ε

10m
≤ ε

5m
.

Therefore, ∀t ≥ max(t3, t∗ω), there exists k∗
ω,t = maxi∈I ki,t,ω such that T1 ≤ ε/5 for all k ≥ k∗

ω,t.

In conclusion, for any ω ∈ Ω0 ∩ Ω1 and any ε > 0, we can choose tω = max(t1, t2, t3, t∗ω) that yields

inequalities showing that
∣∣∣∫ g(x) dĜk(x) −

∫
g(x) dF1(x)

∣∣∣ ≤ ε for all k ≥ kω(tω) = max(kω,tω , k∗
ω,tω

). In

other words, the left hand side of Expression (9) converges to 0 for any ω ∈ Ω0 ∩ Ω1 with P (Ω0 ∩ Ω1) = 1,

i.e. that expression converges almost surely to 0.

Proof of Corollary 3.1. Use Theorem 3.2 with g(x) = x.

Proof of Lemma 4.4. Suppose that f(x, θ0, ρ) has a discontinuity at x = x1. Then, there exists ε > 0 such

that for all δ > 0, there exists x2 with |x1 − x2| < δ but

|f(x1, θ0, ρ) − f(x2, θ0, ρ)| > ε. (10)

Let A ⊂ Nx1 be a compact set around x1. Let B = {θ : |θ − θ0| ≤ ρ}. The set A × B is compact and

hence f(x|θ) is uniformly continuous on that domain by Heine-Borel. Therefore, for the ε chosen above,

there exists a δ1 > 0 such that x1, x2 ∈ A and |x1 − x2| < δ1 imply

|f(x1|θ) − f(x2|θ)| < ε/2 (11)

for all θ ∈ B. Choose such an x2 and define

θ1 = arg max
|θ−θ0|≤ρ

f(x1|θ) and θ2 = arg max
|θ−θ0|≤ρ

f(x2|θ).

The maxima are attained since A × B is compact and f(x|θ) continuous in θ. Therefore,

f(x1, θ0, ρ) = f(x1|θ1) and f(x2, θ0, ρ) = f(x2|θ2). (12)

Consider the following two cases.

Case 1: f(x1|θ1) > f(x2|θ2)

By Equations (10) and (12), f(x1|θ1) ≥ f(x2|θ2) + ε. Furthermore, inequality (11) implies that f(x2|θ1) >

f(x1|θ1) − ε/2 ≥ f(x2|θ2) + ε/2, a contradiction with the definition of θ2.

Case 2: f(x1|θ1) < f(x2|θ2)

By Equations (10) and (12), f(x1|θ1) ≤ f(x2|θ2) − ε. Inequality (11) yields f(x1|θ2) > f(x2|θ2) − ε/2 ≥

f(x1|θ1) + ε/2, a contradiction with the definition of θ1.

Therefore, we conclude that f(x, θ0, ρ) is continuous at x1.
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Proof of Lemma 4.5. Fix r > 0. Since φ(x, r) is discontinuous at x0, there exists ε > 0 such that for any

δ > 0, ∃x1 such that |x0 − x1| < δ but

|φ(x0, r) − φ(x1, r)| > 2ε. (13)

For any fixed δ and x1, consider the following two cases.

Case 1: φ(x0, r) > φ(x1, r) + 2ε.

By the continuity of f(x|θ), it is possible to choose |θ0| > r such that f(x0|θ0) is arbitrarily close to φ(x0, r),

say less than ε apart, i.e. f(x0|θ0) ≥ φ(x0, r)− ε. For that possibly suboptimal θ0, φ(x1, r) ≥ f(x1|θ0), hence

f(x0|θ0) ≥ φ(x0, r) − ε > φ(x1, r) ≥ f(x1|θ0) meaning that |f(x0|θ0) − f(x1|θ0)| ≥ f(x0|θ0) − f(x1|θ0) ≥

φ(x0, r) − ε − φ(x1, r) > ε because of Equation (13). Therefore, ωf(·|θ0)(δ, x0) > ε.

Case 2: φ(x0, r) < φ(x1, r) − 2ε.

The continuity of f(x|θ) allows us to choose |θ1| > r such that f(x1|θ1) is close to φ(x1, r), say less than

ε apart, i.e. f(x1|θ1) ≥ φ(x1, r) − ε. Then, by the definition of φ, we have φ(x0, r) ≥ f(x0|θ1), hence

f(x1|θ1) ≥ φ(x1, r) − ε > φ(x0, r) ≥ f(x0|θ1). Therefore, |f(x1|θ1) − f(x0|θ1)| ≥ f(x1|θ1) − f(x0|θ1) ≥

φ(x1, r) − ε − φ(x0, r) > ε by Equation (13). Therefore, ωf(·|θ1)(δ, x0) > ε.

By combining both cases, we can conclude that for all δ > 0, there exists a θ such that ωf(·|θ)(δ, x0) > ε

Proof of Theorem 5.1. The Glivenko-Cantelli lemma shows that as k → ∞, supx |F̂ik(x)−Fi(x)| → 0 almost

surely. Let Ωi be the set of probability 1 where the convergence occurs.

For any fixed λ ∈ [0, 1]m with
∑m

i=1 λi = 1, the summand and the integrand of the following expressions

are bounded by 1, thus (1/n1k)
∑n1k

j=1 {
∑m

i=1 λiFi(X1j) − F1(X1j)}2 → E[{
∑m

i=1 λiFi(X11) − Fi(X11)}2]

almost surely as k → ∞ by the strong law of large numbers. Let Ω′ be the set of probability 1 on which the

convergence occurs. Note that the expectation in the expression above is taken over the random variable

X11 which follows distribution F1.

Consider now the set Ω0 = Ω′ ∩
⋂m

i=1 Ωi and let ω ∈ Ω0 be any fixed element of that set. Note that by

construction P (Ω0) = 1.

Let B(x, r) denote the open ball of radius r centered at x. Since LC is an open set, any small enough

ε > 0 will be such that B(λ∗, ε) ∩ L = ∅. Then, consider Pk(λ) as defined in Equation (1) and for any

λ ∈ B(λ∗, ε), Pk(λ) is greater than or equal to∫ ∣∣∣∣∣
m∑

i=1

λiF̂ik(x) − F̂1k(x)

∣∣∣∣∣
2

dF̂1k(x) ≥
∫ ⎧⎨⎩

∣∣∣∣∣
m∑

i=1

λiF̂ik(x) − F1(x)

∣∣∣∣∣
2

−
∣∣∣F1(x) − F̂1k(x)

∣∣∣2
⎫⎬⎭ dF̂1k(x)

≥
∫ ⎧⎨⎩

∣∣∣∣∣
m∑

i=1

λiFi(x) − F1(x)

∣∣∣∣∣
2

−
∣∣∣∣∣

m∑
i=1

λiF̂ik(x) −
m∑

i=1

λiFi(x)

∣∣∣∣∣
2

−
∣∣∣F1(x) − F̂1k(x)

∣∣∣2
⎫⎬⎭ dF̂1k(x)

≥ 1
n1k

n1k∑
j=1

{
m∑

i=1

λiFi(X1j) − F1(X1j)

}2

−
m∑

i=1

λ2
i sup

x

∣∣∣F̂ik(x) − Fi(x)
∣∣∣2 − sup

x

∣∣∣F̂1k(x) − F1(x)
∣∣∣2
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≥ 1
2
E

⎡⎣{ m∑
i=1

λiFi(X11) − Fi(X11)

}2
⎤⎦ = K > 0

for a large enough k.

The fact that λ ∈ LC implies that
∑m

i=1 λiFi(x) �= F1(x) for some x where F1(x) is not flat, i.e. some x

with positive probability, thus E
[
{
∑m

i=1 λiFi(X11) − F1(X11)}2
]

> 0.

Therefore, there exist k0(ω) and K > 0 such that Pk(λ) > K for all k ≥ k0(ω). However, Lemma 3.1

shows that Pk{μk} → 0 as k → ∞. Therefore, μk ∈ B(λ∗, ε) at most finitely many times. This is true of

any λ∗ ∈ LC , meaning that for all ω ∈ Ω0, ||λ∗ − μk|| > ε at most finitely many times.

Proof of Corollary 5.1. By Theorem 5.1, the neighborhood of any λ ∈ LC can be visited at most finitely

many times. Hence, any accumulation point belongs to L.

Proof of Corollary 5.2. The vector [1, 0, . . . , 0]T always belongs to L. Therefore, L will be a singleton only

when L = {[1, 0, . . . , 0]T}. Let ε > 0 and let A = [0, 1]m\B([1, 0, . . . , 0]T, ε) where B(x, r) denote the open

ball of radius r centered at x. The set A is closed and bounded thus compact.

Let B̄(x, r) be the closed ball of radius r centered at x. Consider the sets B̄(x, ε/2) for x ∈ [0, 1]m; they

form a covering of A. Since A is a compact set, there exist a finite sub-covering with balls centered at xs

for s = 1, . . . , S.

Consider now the sequence of MAMSE weights μk. By Theorem 5.1, for every fixed ω ∈ Ω1 with

P (Ω1) = 1, any of the balls B̄(xs, ε/2) will contain at most finitely many μk, i.e.

μk ∈
S⋃

s=1

B̄(xs, ε/2) finitely many times. (14)

Consequently,

μk ∈
{

S⋃
s=1

B̄(xs, ε/2)

}C

⊂ B([1, 0, . . . , 0]T, ε) i.o. (15)

Expressions (14) and (15) imply that if it exists, the limit of μk is in the set B([1, 0, . . . , 0]T, ε). Since ε can

be arbitrarily small and since the space is complete, we conclude that μk → [1, 0, . . . , 0]T almost surely.
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